If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2+60x-250=0
a = -2; b = 60; c = -250;
Δ = b2-4ac
Δ = 602-4·(-2)·(-250)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-40}{2*-2}=\frac{-100}{-4} =+25 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+40}{2*-2}=\frac{-20}{-4} =+5 $
| 11+3r=5(r+4)-5r | | 32.25=6g | | |2x+10|=20 | | 9x-3(5+3x)=10 | | p=0.06p=26.50 | | 5(3x-5)+2(16-2x)-2(5x+1)=-1 | | −56e−23e=−24 | | 63+5b=13 | | -2x²+60x-250=0 | | -8(8+8k)=5+5k | | -c+8=5 | | 102=-(2+7n)-6n | | 3/4x=2(x-8) | | n/5=17/3 | | 3/10+3x/5=9/10+4x/5 | | -144=-8(3n-6) | | 4(3-x)-5=27 | | 3x+10+2x+1+8/9x10=180 | | (w)(w+5)=180 | | p-16=40 | | -9-11(x-4)=6(2-2x) | | 7+1/3x=18 | | 7x+20+8x+10=180 | | 3(2x-8)=6x+4-2x | | 4x-4=420 | | 5(7+4m)+3=7m-40 | | 2(3x+4)=3 | | -6(10x-6)=-12-7(6+10x) | | 7-2x=22-1x | | 3x-6/2=18 | | 8-3(7-4x)=83 | | 30=5(x-2) |